Свойства ядерных сил. Ядерные силы

Основные свойства. Природа сил, удерживающих нуклоны в ядрах, до настоящего времени в полной мере не выяснена. Вместе с тем получено много данных о физических свойствах ядер, а также о взаимодействии свободных нуклонов при столкновениях в очень широком диапазоне кинетических энергий от 10 -4 до 10 11 эВ. Анализ наблюдаемых явлений позволяет сделать некоторые выводы о действующих между нуклонами силах, которые сводятся к следующему. Ядерные силы – это мощные силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер , ядерные силы зависят от спина, не зависят от электрического заряда и не являются силами центральными.

Кулоновский и ядерный потенциал ядра. О ядерных силах говорят как о мощных силах в том смысле, что они по крайней мере в 100 раз превосходят кулоновские силы, если последние рассматривать на ядерных расстояниях ~10 -13 см, где они также очень велики. Близкодействие ядерных сил приводит к резкому разграничению областей, где проявляются или только дальнодействующие кулоновские силы или только ядерные, так как последние подавляют кулоновские на малых расстояниях. При этом присутствие одного из взаимодействующих тел выражается через потенциал в функции расстояния от центра тела, а сила, действующая со стороны первого тела на другое в точке r , находится как производная потенциала по пространственным координатам в этой точке. Электрический потенциал φ заряда Ze (ядра с Z протонами) равен:

где ε 0 – электрическая постоянная, а потенциальная энергия взаимодействия зарядов Ze и e (ядра и протона) равна:

, (2.13)

т.е. отличается от потенциала только константой, и поэтому пространственные зависимости U(r) и φ(r) совпадают. В связи с этим вместо потенциала обычно пользуются потенциальной энергией. Тогда в одних координатах можно представлять разные силы, в данном случае кулоновские и ядерные. Возрастающий при убыли координаты r потенциал описывает отталкивание, а убывающий – притяжение. При выборе нулевого значения на бесконечности потенциальная энергия соответственно положительна для отталкивания и отрицательна для притяжения. Взаимодействие протона с ядром может быть представлено, как на рис. 2.5. На расстоянии радиуса действия ядерных сил, т.е. на границе ядра R , кулоновское отталкивание сразу меняется на притяжение. Вероятно, в районе пространственной координаты R переход от отталкивания к притяжению происходит хотя и быстро, но непрерывно. Вместе с тем скачкообразное изменение энергии от U k до -U 0 близко к истине, и с определенной степенью приближения ядерный потенциал изображают в виде прямоугольной потенциальной ямы.

Высоту кулоновского барьера для протона U k можно подсчитать, поскольку радиус ядра имеет определенное значение. Она равна значению потенциала (2.12) при r=R , умноженному на элементарный заряд протона е :

(МэВ), (2.14)

т.е. высота кулоновского барьера U k для протона примерно равна 1 МэВ у самого легкого ядра и достигает 15 МэВ у ядра урана. Кулоновский барьер для α -частицы с зарядом в 2 раза выше.

Рис. 2.5. Графическое представление ядерного и кулоновского потенциала

Следует указать, что кулоновский барьер, расчитанный по формуле (2.14) относится к точечной частице с зарядом протона. При расчете барьера для реальных ядер надо учитывать, что каждое ядро имеет конечное значение радиуса R . Так кулоновский барьер ядер дейтерия и трития около 1/3 МэВ.

Кулоновский потенциальный барьер препядствует сближению положительно заряженных частиц с атомными ядрами и затрудняет течение ядерных реакций. Если их кинетическая энергия ниже барьера, то при столкновении с ядрами происходит либо кулоновское рассеяние их, либо реакция за счет подбарьерного механизма.

Нейтроны не имеют электрического заряда, свободны от кулоновского взаимодействия и беспрепядственно сближаются с ядрами. Ядерный потенциал нейтрона такой же, как у протона. Поэтому энергия взаимодействия нейтрона с ядром равна:

U=-U 0 при 0 < r < R

U=0 при r > R.

Величина U 0 измерению не доступна и определяется как атрибут теории. Она вычисляется по заданной потенциальной энергии. Фактически такие расчеты выполнены для дейтона – простейшего ядра, состоящего из одного протона и одного нейтрона, и дали результат U 0 = 35 МэВ. Такое же значение обеспечивает согласие с опытом расчетов сечений рассеяния нейтронов ядрами. Наконец, по снижению порога рождения частиц при столкновении протонов, во-первых, со свободными покоящимися протонами, и во-вторых, с движущимися внутри ядер нуклонами была определена кинетическая энергия нуклонов внутри ядер. Она оказалась примерно равной 25 МэВ, что при энергии связи 8 МэВ также дает потенциал около 35 МэВ (см. рис. 2.5).

Все нуклоны ядер имеют очень близкие по значению энергии связи, что прямо указывает на независимость ядерного потенциала от пространственных координат. Ведь если бы потенциал снижался и, значит, усиливалось притяжение при приближении к центру ядра, то там существовали бы состояния со много меньшей полной энергией, т.е. с большей энергией связи, чем у перифирийных нуклонов. Это сразу отразилось бы на значении средней энергии связи нуклонов в ядрах разных размеров.

Модели ядер. Экспериментальные данные свидетельствуют о постоянстве потенциала внутри ядра. А такой потенциал и есть потенциал жидкой капли: производная по пространственной координате (т.е. сила) равна нулю внутри ядра и имеет большое значение на поверхности. Следовательно, внутри ядра-капли частицы должны вести себя как свободные.

Однако модельное описание не является всеобъемлющим. Каждая модель, как и капельная, призвана описать лишь некоторые особенности ядра и приводит к неверным представлениям за пределами применимости модели. Вместе с тем, модельный подход неизбежен в отсутствие последовательной теории ядерных сил, и каждая выдвигаемая задача может быть решена лишь в рамках своей модели.

В ядре, как квантово-механической системе все нуклоны взаимодействуют с определенными энергией и механическим моментом, и хаоса жидкой капли здесь быть не может. На это прежде всего указывают магические числа ядер:

2, 8, 20, 50, 82, 126

Если число протонов или нейтронов ядра совпадает с одним из магических чисел, то ядро обладает свойствами системы с замкнутыми оболочками. Каждая оболочка представляет группу состояний с одинаковой или близкой энергией, и она замкнута, если все уровни оболочки заняты частицами. Замкнутые оболочки обладают совершенной структурой и поэтому особенно устойчивы. Соответствующие магические ядра также обладают особыми свойствами. Их энергия связи выше, чем у ЧЧ ядер. Такие ядра очень неохотно поглощают соответственно протоны или нейтроны, а имеющийся сверх магического числа протон или нейтрон всегда имеет аномально низкую энергию связи. Ситуация напоминает идеальные электронные комбинации инертных газов.

Ряд магических чисел ядер отличается от соответствующего атомного ряда. Как оказалось, несовпадение их вызвано спин-орбитальным взаимодействием, порождающим в случае нуклонов большую разницу в энергии двух состояний, отличающихся ориентацией спина частицы относительно собственного орбитального момента, и несущественно для электронов. Учет этого взаимодействия позволил получить ряд магических чисел расчетным путем, и это явилось подтверждением оболочечной структуры ядра.

Существование упорядочного движения внутри ядра и размещение нуклонов по оболочкам не противоречат потенциалу на рис. 2.5. В обычной капле жидкости частицы действительно свободны и в столкновениях обмениваются энергией. В ядре же нуклоны находятся в наинизших энергетических состояниях, и поэтому столкновения с обменом энергией невозможны просто потому, что избыточной энергии нет. Ядро – это полностью вымороженная капля, в которой может быть только упорядоченное движение, присущее низшим энергетическим состояниям.

Оболочечная модель позволяет объяснить многие факты, относящиеся к ядрам в основном энергетическом состоянии. Так α -распад тяжелых ядер заканчивается на ядрах Pb и Bi , поскольку это магические ядра, а одно из них – 208 Pb – дважды магическое ядро. Наибольшее число изотопов у элемента Sn , т.к. у него магическое Z=50 , а наибольшее число изотонов соответствует магическому числу нейтронов 82. Модель оболочек позволяет понять распространенность ядерных изомеров и проводить некоторые расчеты для основных состояний ядер.

Обменные силы. Постоянство удельной энергии связи получает естественное объяснение при квантово-механическом подходе к взаимодействию частиц. Взаимодействие можно описать не посредством потенциала, а через обмен виртуальными частицами, которыми для нуклонов являются π -мезоны. В этом случае каждый акт взаимодействия реализуется при испускании первым нуклоном π -мезона и его поглощение вторым нуклоном. Вероятность такого обмена сразу с двумя партнерами маловероятна и никогда не реализуется со всеми частицами, находящимися в пределах радиуса действия сил. Отсюда и вытекает насыщение со всеми последствиями: постоянством удельной энергии связи, ростом объема пропорционально числу частиц, независимость потенциала от координат. Поэтому говорят, что если силам присуще насыщение, то они имеют обменный характер. Обмен не означает какие-то новые силы, это особенность проявления сил – электрических или ядерных.

Обмен виртуальными частицами не предполагаемый механизм, не способ абстрактного описания взаимодействия, а реально протекающий процесс. Его удалось наблюдать в опыте при столкновении нуклонов, поскольку нуклоны представлены в двух различных состояниях: протона и нейтрона. Когда были построены ускорители на энергии порядка 100 МэВ, что много больше энергии взаимодействия нуклонов (35 МэВ), появилась возможность по кинематике разлета столкнувшихся частиц отличить массу ускоренную от массы покоившейся мишени независимо от того, какую частицу представляет масса. Оказалось, что почти половина высокоэнергетических нейтронов после столкновения с протонами обращалась в протоны, а протоны мишени – соответственно в нейтроны. Такое возможно только вследствие обмена нуклонов квантовыми состояниями, т.е. благодаря обменному взаимодействию.

Зависимость от спина. Притяжение нуклонов зависит от того, как ориентированы их спины. Если нуклоны одноименные, то наибольшее притяжение наблюдается в случае антипараллельной ориентации их спинов, когда их суммарный спин равен нулю. Как раз такой особенностью взаимодействия нуклонов объясняется эффект парности энергии связи. Напротив, у разноименных нуклонов притяжение эффективнее при параллельных спинах, на что, в частности, указывает основное состояние дейтона, спин которого равен единице.

Энергия связи дейтона настолько низка, что в пределах потенциальной ямы нет ни одного возбужденного уровня. Но как показали расчеты, первый возбужденный уровень лежит чуть выше края потенциальной ямы при энергии 0,07 МэВ. Этот уровень соответствует антипараллельной ориентации спинов протона и нейтрона и, поскольку его энергия положительна, реализоваться не может. Это, так называемый виртуальный уровень. Однако при столкновении свободных нейтрона и протона с энергией, близкой к указанному значению, потенциальная возможность связанного состояния приводит к возрастанию сечения взаимодействия, конечно только для нулевого суммарного спина.

Ядерные силы зависят и от величины спина, лучшей иллюстрацией чего является рассеяние низкоэнергетических нейтронов молекулярным водородом. Сечение рассеяния нейтронов молекулой ортоводорода, ядерный спин которой равен единице, оказалось в 30 раз дольше сечения рассеяния молекулой пароводорода, спин которой равен нулю.

Независимость от заряда. Тщательное изучение взаимодействия нуклонов, как в свободных состояниях при столкновениях, так и в связанных, т.е. в составе ядер, показало, что через посредство ядерных сил взаимодействие пар нуклонов (рр), (рn), (nn) абсолютно одинаково. Следовательно, ядерные силы не зависят от электрического заряда.

Тензорные силы. Электрические квадрупольные моменты ядер указывают на то, что ядерные силы не обязательно сферически симметричны. Сила зависит от ориентации радиуса-вектора нуклона относительно вектора спина ядра. Потенциал на рис. 2.5 – центральный, и, следовательно, эта особенность ядерных сил там не учтена, как не учтена и зависимость сил от спина. Несферический потенциал представляется тензором, в связи с чем ядерные силы называются также тензорными.

Тема 3

Ядерные превращения. Радиоактивность. Закон распада. Характеристики распада. Альфа-распад. Бета-распад. Основные понятия и характеристики. Ядерные реакции. Закон сохранения энергии. Закон сохранения импульса. Закон сохранения механического момента. Ядерные реакции с участием нейтронов.

Атомное ядро, состоящее из определенного числа протонов и нейтронов, является единым целым благодаря специфическим силам, которые действуют между нуклонами ядра и называются ядерными. Экспериментально доказано, что ядерные силы имеют очень большие значения, намного превышающие силы электростатического отталкивания между протонами. Это проявляется в том, что удельная энергия связи нуклонов в ядре намного больше работы сил кулоновского отталкивания. Рассмотрим основные особенности ядерных сил .

1. Ядерные силы являются короткодействующими силами притяжения . Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Расстояние порядка (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил , с его увеличением ядерные силы быстро уменьшаются. На расстоянии порядка (2-3) м ядерное взаимодействие между нуклонами практически отсутствует.

2. Ядерные силы обладают свойством насыщения , т.е. каждый нуклон взаимодействует только с определенным числом ближайших соседей. Такой характер ядерных сил проявляется в приближенном постоянстве удельной энергии связи нуклонов при зарядовом числе А >40. Действительно, если бы насыщения не было, то удельная энергия связи возрастала бы с увеличением числа нуклонов в ядре.

3. Особенностью ядерных сил является также их зарядовая независимость , т.е. они не зависят от заряда нуклонов, поэтому ядерные взаимодействия между протонами и нейтронами одинаковы. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, энергии связи ядер гелия и тяжелого водорода – трития составляют соответственно 7,72 МэВ и 8,49 МэВ . Разность энергий связи этих ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10 –15 м, что согласуется с величиной радиуса действия ядерных сил.

4. Ядерные силы не являются центральными и зависят от взаимной ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяниянейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде.

Сложный характер ядерных сил не позволяет разработать единую последовательную теорию ядерного взаимодействия, хотя было предложено много различных подходов. Согласно гипотезе японского физика Х. Юкавы (1907-1981), которую он предложил в 1935 г., ядерные силы обусловлены обменом - мезонами, т.е. элементарными частицами, масса которых приблизительно в 7 раз меньше массы нуклонов . По этой модели нуклон за время m - масса мезона) испускает мезон, который, двигаясь со скоростью, близкой к скорости света, проходит расстояние , после чего поглощается вторым нуклоном. В свою очередь второй нуклон также испускает мезон, который поглощается первым. В модели Х. Юкавы, таким образом, расстояние, на котором взаимодействуют нуклоны, определяется длиной пробега мезонов, что соответствует расстоянию около м и по порядку величины совпадает с радиусом действия ядерных сил.


Обратимся к рассмотрению обменного взаимодействия между нуклонами. Существуют положительный , отрицательный и нейтральный мезоны. Модуль заряда - или - мезонов численно равен элементарному заряду e . Масса заряженных - мезонов одинакова и равна (140 МэВ ), масса - мезона равна 264 (135 МэВ ). Спин как заряженных, так и нейтральных - мезонов равен 0. Все три частицы нестабильны. Время жизни - и - мезонов составляет 2,6 с , - мезона – 0,8·10 -16 с . Взаимодействие между нуклонами осуществляется по одной из следующих схеме:

1. Нуклоны обмениваются мезонами: . (22.8)

В этом случае протон испускает - мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон, затем такой же процесс протекает в обратном направлении. Таким образом, каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть в нейтральном.

2. Нуклоны обмениваются - мезонами:

3. Нуклоны обмениваются - мезонами:

, (22.10)

Все эти процессы доказаны экспериментально. В частности, первый процесс подтверждается при прохождении пучка нейтронов через водород. В пучке появляются движущиеся протоны, а соответствующее число практически покоящихся нейтронов обнаруживается в мишени.

Модели ядра. Под моделью ядра в ядерной физике понимают совокупность физических и математических предположений с помощью которых можно рассчитать характеристики ядерной системы, состоящей из А нуклонов.

Гидродинамическая (капельная) модель ядра В ее основу положено предположение о том, что благодаря большой плотности нуклонов в ядре и чрезвычайно сильному взаимодействию между ними независимое движение отдельных нуклонов является невозможным и ядро представляет собой каплю заряженной жидкости плотностью .

Оболочечная модель ядра В ней предполагается, что каждый нуклон движется независимо от других в некотором среднем потенциальном поле (потенциальной яме , создаваемом остальными нуклонами ядра.

Обобщённая модель ядра , объединяет основные положения создателей гидродинамической и оболочечной моделей. В обобщенной модели предполагается, что ядро состоит из внутренней устойчивой части – остова, который образован нуклонами заполненных оболочек, и внешних нуклонов, движущихся в поле, создаваемом нуклонами остова. В связи с этим движение остова описывается гидродинамической моделью, а движение внешних нуклонов - оболочечной. За счет взаимодействия с внешними нуклонами остов может деформироваться, а ядро – вращаться вокруг оси, перпендикулярной оси деформации.

26. Реакции деления атомных ядер. Ядерная энергетика .

Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействием друг с другом или с другими ядрами или элементарными частицами. Первое сообщение о ядерной реакции принадлежит Э.Резерфорду. В 1919г он обнаружил, что когда - частицы проходят через газообразный азот, некоторые из них поглощаются, причем одновременно происходит испускание протонов. Резерфорд пришел к выводу, что ядра азота превращались в ядра кислорода в результате ядерной реакции вида:

, (22.11)

где − - частица; − протон (водород).

Важным параметром ядерной реакции является ее энергетический выход , который определятся по формуле:

(22.12)

Здесь и - суммы масс покоя частиц до реакции и после нее. При ядерные реакции протекают с поглощением энергии, поэтому они называются эндотермическими, а при − с выделением энергии. В этом случае они называются экзотермическими.

В любой ядерной реакции всегда выполняются законы сохранения :

электрического заряда ;

− числа нуклонов;

− энергии;

− импульса.

Первые два закона позволяют правильно записывать ядерные реакции даже в тех случаях, когда одна из частиц, участвующих в реакции, или один из его продуктов неизвестны. С помощью законов сохранения энергии и импульса можно определить кинетические энергии частиц, которые образуются в процессе реакции, а также направления их последующего движения.

Для характеристики эндотермических реакций вводится понятие пороговая кинетическая энергия , или порог ядерной реакции , т.е. наименьшая кинетическая энергия налетающей частицы (в системе отсчета, где ядро-мишень покоится), при которой ядерная реакция становится возможной. Из закона сохранения энергии и импульса следует, что пороговая энергия ядерной реакции рассчитывается по формуле:

. (22.13)

Здесь - энергия ядерной реакции (7.12); -масса неподвижного ядра – мишени; − масса налетающей на ядро частицы.

Реакции деления . В 1938г немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра приблизительно вдвое меньшие, чем исходное ядро урана. Это явление было названо делением ядра .

Оно представляет собой первую экспериментально наблюдаемую реакцию ядерных превращений. Примером может служить одна из возможных реакций деления ядра урана-235:

Процесс деления ядер протекает очень быстро за время ~10 -12 с. Энергия, которая выделяется в процессе реакции типа (22.14), составляет примерно 200 МэВ на один акт деления ядра урана-235.

В общем случае реакцию деления ядра урана–235 можно записать в виде:

+нейтроны. (22.15)

Объяснить механизм реакции деления можно в рамках гидродинамической модели ядра. Согласно этой модели при поглощении нейтрона ядром урана оно переходит в возбужденное состояние (рис. 22.2).

Избыточная энергия, которую получает ядро вследствие поглощения нейтрона, вызывает более интенсивное движение нуклонов. В результате ядро деформируется, что приводит к ослаблению короткодействующего ядерного взаимодействия. Если энергия возбуждения ядра больше некоторой энергии, называемой энергией активации , то под влиянием электростатического отталкивания протонов ядро расщепляется на две части, с испусканием нейтронов деления . Если энергия возбуждения при поглощении нейтрона меньше энергии активации, то ядро не доходит до

критической стадии деления и, испустив - квант, возвращается в основное

Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Длина (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра , в которых одинаково общее число нуклонов , но число протонов в одном равно числу нейтронов другом . Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.

Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10 –15 м, что согласуется с величиной радиуса ядерных сил.

Ядерные силы обладают свойством насыщения , которое проявляется в том , что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов . Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A . Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.

Итак, перечислим общие свойства ядерных сил :

· малый радиус действия ядерных сил (R ~ 1 Фм);

· большая величина ядерного потенциала U ~ 50 МэВ;

· зависимость ядерных сил от спинов взаимодействующих частиц;

· тензорный характер взаимодействия нуклонов;

· ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);

· ядерное взаимодействие обладает свойством насыщения;

· зарядовая независимость ядерных сил;

· обменный характер ядерного взаимодействия;

· притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм).

в заимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля π-мезонов . Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами. Взаимодействие между нуклонами, возникающее в результате обмена квантами массы m , приводит к появлению потенциала U я (r ):

.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Наша задача: познакомить с основными свойствами ядерных сил, вытекающих из имеющихся экспериментальных данных.

Начнем с перечисления известных свойств ядерных сил, чтобы потом перейти к их обоснованию:

  • Это силы притяжения.
  • Они короткодействующие.
  • Это силы большой величины (по сравнению с электромагнитными, слабыми и гравитационными).
  • Они обладают свойством насыщения.
  • Ядерные силы зависят от взаимной ориентации взаимодействующих нуклонов.
  • Не являются центральными.
  • Ядерные силы не зависят от заряда взаимодействующих частиц.
  • Зависят от взаимной ориентации спина и орбитального момента.
  • Ядерные силы носят обменный характер.
  • На малых расстояниях (r м) являются силами отталкивания.

Не приходится сомневаться в том, что ядерные силы - это силы притяжения. Иначе кулоновские силы отталкивания протонов сделали бы невозможным существование ядер.

Свойство насыщения ядерных сил следует из поведения зависимости удельной энергии связи от массового числа (см. лекцию).

Зависимость энергии связи, приходящейся на нуклон, от массового числа

Если бы нуклоны в ядре взаимодействовали со всеми другими нуклонами, энергия взаимодействия была пропорциональна числу сочетаний из A по 2, т.е. A(A-1)/2 ~ A 2 . Тогда энергия связи, приходящаяся на один нуклон, была пропорциональна A . На самом деле, как видно из рисунка, она примерно постоянна ~8 МэВ. Это и свидетельствует об ограниченном числе связи нуклона в ядре.

Свойства, следующие из изучения связанного состояния - дейтрона

Дейтрон 2 1 H представляет собой единственное связанное состояние двух нуклонов - протона и нейтрона. Не существует связанных состояний протон - протон и нейтрон - нейтрон. Перечислим известные из опытов свойства дейтрона.

  • Энергия связи нуклонов в дейтроне G d = 2.22 МэВ.
  • Не имеет возбужденных состояний.
  • Спин дейтрона J = 1 , четность положительная.
  • Магнитный момент дейтрона μ d = 0.86 μ я , здесь μ я = 5.051·10 -27 Дж/Тл - ядерный магнетон.
  • Квадрупольный электрический момент положителен и равен Q = 2.86·10 -31 м 2 .

В первом приближении взаимодействие нуклонов в дейтроне можно описать прямоугольной потенциальной ямой

Здесь μ - приведенная масса, равная μ = m p ·m n /(m p +m n) .

Это уравнение можно упростить, введя функцию χ = r*Ψ(r) . Получим

Решаем отдельно для областей r и r > a (учтем, что E для связанного состояния, которое ищем)

Коэффициент B надо положить равным нулю, иначе при r → 0 волновая функция Ψ = χ/r обращается в бесконечность; и коэффициент B 1 = 0 , иначе решение расходится при r → ∞ .

Решения должны быть сшиты при r = a , т.е. приравнять значения функций и их первых производных. Это дает

Рис.1 Графическое решение уравнения (1)

Подставляя в последнее уравнение значения k , k 1 и полагая E = -G d получим уравнение, связывающее энергию связи G d , глубину ямы U 0 и ее ширину a

Правая часть, учитывая малость энергии связи, - малое отрицательное число. Следовательно, аргумент котангенса близок к π/2 и слегка превышает его.

Если взять экспериментальное значение энергии связи дейтрона G d = 2.23 МэВ, то для произведения a 2 ·U 0 получаем ~2.1·10 -41 м 2 Дж (к сожалению, по отдельности значения U 0 и a получить не удается). Задаваясь разумным a = 2·10 -15 м (следует из опытов по рассеянию нейтронов, об этом дальше), для глубины потенциальной ямы получаем примерно 33 МэВ.

Умножим левую и правую часть уравнения (1) на a и введем вспомогательные переменные x = ka и y = k 1 a . Уравнение (1) приобретает вид

Похожие статьи